Contact Details

nameCarlos Garcia Cordero
positionPhD at GRK Privacy and Trust for mobile Users
email

garcia (AT) tk(DOT)tu-darmstadt(DOT)de

phone+49 (6151) 16 - 23205
fax+49 (6151) 16 - 23202
officeS2|02 A 316
postal addressTU Darmstadt - FB 20
FG Telekooperation
Hochschulstraße 10
D-64289 Darmstadt
Germany

Research Interests

  • Machine learning

    • Anomaly Detection
    • Bayesian Networks
    • Deep Learning

  • Network Intrusion Detection

    • Collaborative Intrusion Detection
    • Distributed Intrusion Detection

Short Biography

Carlos García Cordero is a scientist, systems engineer, mathematician, musician and thinker.

Carlos' research experience and interests are wide and cover diverse topics such as cybersecurity, artificial intelligence, programming languages, compilers, machine learning and computer graphics, among others. 

Carlos is currently studying a PhD in Cyber Security and Distributed Machine Learning at TU Darmstadt. He has an MSc in Artificial Intelligence from The University of Edinburgh and a BSc in Computer Systems Engineering from the ITESM CSF in Mexico, both achieved with the highest honours.

Publications

HOLEG: a Simulator for Evaluating Resilient Energy Networks based on the Holon Analogy

Author Rolf Egert, Carlos Garcia Cordero, Andrea Tundis, Max Mühlhäuser
Date October 2017
Kind Inproceedings
PublisherIEEE
Book title21st IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications (DS-RT 2017)
LocationRome, Italy
KeyTUD-CS-17-0002
Research Areas SPIN: Smart Protection in Infrastructures and Networks, Telecooperation
Abstract <div>The process of designing and evaluating distributed</div> <div>Cyber-Physical Systems (CPSs) is not a trivial task. There</div> <div>are many challenges to tackle such as managing distributed</div> <div>resources, enabling communication between components, and</div> <div>choosing performance metrics to evaluate the “goodness” of</div> <div>the system. Smart Grids (SGs) are prominent representatives</div> <div>of CPSs, a particular type of Critical Infrastructure (CI), whose</div> <div>organizational model is becoming more distributed and dynamic.</div> <div>Due to this paradigm shift, new control and management mechanisms</div> <div>need to be identified and tested to guarantee uninterrupted</div> <div>operation. However, novel approaches cannot always be tested</div> <div>against real networks as the economic cost and risk can be</div> <div>high. In contrast, modeling and simulation techniques are viable</div> <div>evaluation mechanisms that support the continuous evolution of</div> <div>CIs. In this paper, we present an Open Source time-discrete</div> <div>simulation software, called HOLEG, that models and evaluates</div> <div>SGs. The software is based on the Holon analogy, a bioinspired</div> <div>approach that enables systems resilience through flexible</div> <div>reconfiguration mechanisms. The presented software provides</div> <div>features that enable the integration and execution of optimization</div> <div>algorithms along with their evaluation. To demonstrate HOLEG,</div> <div>a case study is presented where a heuristic algorithm is implemented</div> <div>to minimize wasted energy while preventing network</div> <div>destabilization.</div>
[Export this entry to BibTeX]

Important Copyright Notice:

The documents contained in these directories are included by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

Theses

1 Entries found


On the Analysis & Generation of Synthetic Attacks for Intrusion Detection Systems

Master Thesis

finished


Intrusion Detection Systems (IDS) have established themselves as a mandatory line of defense for critical infrastructure. One main aspect during the development of an IDS is the evaluation and optimization of the detection algorithms. Currently there is no standardized model for the evaluation of the detection efficiency. A common approach has been the use of static datasets, but the publicly available datasets have flaws in many regards, like their actuality and the absence of up-to-date attacks.This creates challenges in terms of the reproducibility and the comparison of results.


A A A | Drucken Print | Impressum Impressum | Sitemap Sitemap | Suche Search | Kontakt Contact | Website Analysis: More Information
zum Seitenanfangzum Seitenanfang